行业定义与分类 碳化硅器件是指以碳化硅为原材料制成的器件
SiC碳化硅是由碳元素和硅元素组成的一种化合物半导体材料,是制作高温、高频、大功率、高压器件的理想材料之一。相比传统的硅材料(Si),碳化硅(SiC)的禁带宽度是硅的3倍;导热率为硅的4-5倍;击穿电压为硅的8-10倍;电子饱和漂移速率为硅的2-3倍。碳化硅原材料核心优势体现在:1)耐高压特性:更低的阻抗、禁带宽度更宽,能承受更大的电流和电压,带来更小尺寸的产品设计和更高的效率;2)耐高频特性:SiC器件在关断过程中不存在电流拖尾现象,能有效提高元件的开关速度(大约是Si的3-10倍),适用于更高频率和更快的开关速度;3)耐高温特性:SiC相较硅拥有更高的热导率,能在更高温度下工作。 定义:SiC碳化硅器件是指以碳化硅为原材料制成的器件,按照电阻性能的不同分为导电型碳化硅功率器件和半绝缘型碳化硅基射频器件。功率器件又被称为电力电子器件,是构成电力电子变换装置的核心器件。电力电子器件是对电能进行变换和控制,所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下。电力电子装置正是实现电能高质量高效转换、多能源协调优化、弱电与强电之间控制运行、交流与直流之间能量互换、自动化高效控制等的重要手段,也是实现节能环保、提高电能利用效率的重要保障。射频器件在无线通讯中扮演信号转换的角色,是无线通信设备的基础性零部件,主要包括功率放大器、滤波器、开关、低噪声放大器、双工器等。
碳化硅制成的功率器件根据电学性能差异分成两类,不同的器件具有不同应用范围
导电型碳化硅功率器件主要是通过在导电型衬底上生长碳化硅外延层,得到碳化硅外延片后进一步加工制成,品种包括造肖特基二极管、MOSFET、IGBT等,主要用于电动汽车、光伏发电、轨道交通、数据中心、充电等基础建设。性能优势如下:(1)更强的高压特性。碳化硅的击穿电场强度是硅的10余倍,使得碳化硅器件耐高压特性显著高于同等硅器件。(2)更好的高温特性。碳化硅相较硅拥有更高的热导率,使得器件散热更容易,极限工作温度更高。耐高温特性可以带来功率密度的显著提升,同时降低对散热系统的要求,使终端可以更加轻量和小型化。(3)更低的能量损耗。碳化硅具有2倍于硅的饱和电子漂移速率,使得碳化硅器件具有极低的导通电阻,导通损耗低;碳化硅具有3倍于硅的禁带宽度,使得碳化硅器件泄漏电流比硅器件大幅减少,从而降低功率损耗;碳化硅器件在关断过程中不存在电流拖尾现象,开关损耗低,大幅提高实际应用的开关频率。 半绝缘型碳化硅基射频器件是通过在半绝缘型碳化硅衬底上生长氮化镓外延层,制得碳化硅基氮化镓外延片后进一步制成,包括HEMT等氮化镓射频器件,主要用于5G通信、车载通信、国防应用、数据传输、航空航天。碳化硅、氮化镓材料的饱和电子漂移速率分别是硅的2.0、2.5倍,因此碳化硅、氮化镓器件的工作频率大于传统的硅器件。然而,氮化镓材料存在耐热性能较差的缺点,而碳化硅的耐热性和导热性都较好,可以弥补氮化镓器件耐热性较差的缺点,因此业界采取半绝缘型碳化硅做衬底,在衬底上生长氮化镓外延层后制造射频器件。